Generalized Schur Numbers for $x_1 + x_2 + c = 3x_3$

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Schur Numbers for x1 + x2 + c = 3x3

Let r(c) be the least positive integer n such that every two coloring of the integers 1, . . . , n contains a monochromatic solution to x1 + x2 + c = 3x3. Verifying a conjecture of Martinelli and Schaal, we prove that r(c) = ⌈ 2⌈ 3 ⌉+ c 3 ⌉

متن کامل

On Generalized Schur Numbers

Let L(t) represent the equation x1 + x2 + · · · + xt−1 = xt. For k > 1, 0 6 i 6 k − 1, and ti > 3, the generalized Schur number S(k; t0, t1, . . . , tk−1) is the least positive integer m such that for every k-colouring of {1, 2, . . . ,m}, there exists an i ∈ {0, 1, . . . , k − 1} such that there exists a solution to L(ti) that is monochromatic in colour i. In this paper, we report twenty-six p...

متن کامل

Off-diagonal Generalized Schur Numbers

We determine all values of the 2-colored off-diagonal generalized Schur numbers (also called Issai numbers), an extension of the generalized Schur numbers. These numbers, denoted S(k, l), are the minimal integers such that any red and blue coloring of the integers from 1 to S(k, l) must admit either a solution to ∑k−1 i=1 xi = xk consisting of only red integers, or a solution to ∑l−1 i=1 xi = x...

متن کامل

Modular Schur Numbers

For any positive integers l and m, a set of integers is said to be (weakly) l-sumfree modulo m if it contains no (pairwise distinct) elements x1, x2, . . . , xl, y satisfying the congruence x1 + . . .+ xl ≡ y mod m. It is proved that, for any positive integers k and l, there exists a largest integer n for which the set of the first n positive integers {1, 2, . . . , n} admits a partition into k...

متن کامل

A Lower Bound for Schur Numbers and Multicolor Ramsey Numbers

For k ≥ 5, we establish new lower bounds on the Schur numbers S(k) and on the k-color Ramsey numbers of K3. For integers m and n, let [m,n] denote the set {i |m ≤ i ≤ n}. A set S of integers is called sum-free if i, j ∈ S implies i + j 6∈ S, where we allow i = j. The Schur function S(k) is defined for all positive integers as the maximum n such that [1, n] can be partitioned into k sum-free set...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2009

ISSN: 1077-8926

DOI: 10.37236/194